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• Brief review of cognitive ability testing
• Will demonstrate that general mental ability is 

more valid than previously thought
• Will show that high-validity low adverse impact 

cognitive ability tests cannot exist
– Provide mathematical proof
– Based on past research

• Will discuss implications for personnel selection
• Will include high-level overview in each section

Overview
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• One of the best predictors of training, job, and academic 
performance

• Many civil service tests are cognitive ability tests
• A concern with cognitive ability tests is adverse impact

– Group differences (i.e., mean score test differences for different groups) is 
contributing factor

• As well as cutoff score, recruitment practices, etc.
– Here we use the general term “adverse impact” to refer to average 

differences between majority and minority groups
– This has led to searches for alternatives for cognitive ability tests

• Scientifically speaking, cognitive ability is a construct(s), rather 
than a testing method
– Can appear or be assessed in a variety of test types
– Much of the variance, and validity, is due to general mental ability (g)

Cognitive Ability Testing
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• Meta-analyses show that cognitive ability tests predict 
performance:

– rcognitive ability, job performance = .51 (Schmidt & Hunter, 1998)
– rcognitive ability, job performance = .66 (Hunter, Schmidt, & Le, 2006)
– rcognitive ability, training performance = .63 (Schmidt & Hunter, 2004)
– rSAT, FGPA = .59 (Berry & Sackett, 2009)
– rGRE, LSAT, GMAT, MAT, MCAT, PCAT,1sy Year GPA = .41 to .59 (Kuncel & Hezlett, 

2007)

• Even when combined with other predictors there is still a good 
amount of unexplained variance

• Applied perspective: focus on operational validity – obtain 
correlation between test and performance, then correct for 
range restriction and criterion unreliability

g as a latent variable
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• Basic research perspective: make an additional correction for 
predictor unreliability à True score validity

– Recall that cognitive ability test scores = g + broad factor(s) + narrow 
factor(s) + reliable specific variance + measurement error

– Correcting for predictor reliability removes “measurement error”
– True score = g + broad factor(s) + narrow factor(s) + reliable specific 

variance

• There is a problem here: “true scores” still include non-g
variance (and we know that non-g variance rarely adds validity)

– Jensen (1998): average g-loading for standardized tests is .87; g-loading 
of GATB G-score is .87 (note this served as foundation of Schmidt & 
Hunter’s validity generalization work)

– Reliabilities for standardized tests often in the .90s

g as a latent variable
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• We used three approaches to estimate the validity of the latent 
variable g

– Assumptions
• g-loading is .87
• Specific abilities have criterion-related validity of zero

1. Path Analysis Tracing Rule

g as a latent variable

!"−#$%#,'$()*(+,-.$ = !","−#$%#×1",'$()*(+,-.$
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g as a latent variable
!"−#$%#,'$()*(+,-.$ = !","−#$%#×1",'$()*(+,-.$

1",'$()*(+,-.$ =
!"−#$%#,'$()*(+,-.$

!","−#$%#

2−validity =
2−:;<: =>?@A@:B
2−?C>A@D2

2−validity =
.51
.87

= . JK
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2. Correction for unreliability
• Reliability index: square root of reliability coefficient; gives the 

correlation between observed and true scores.
• If we define “reliability” of a g-loaded test as its “reliability” in 

measuring the latent true-score variable g, then:

g as a latent variable

!−"#$%&%'( = !−'*+' "#$%&%'(
,*$%#-%$%'(

= !−'*+' "#$%&%'(
,*$%#-%$%'( %.&*/0

= !−'*+' "#$%&%'(
,*$%#-%$%'( %.&*/

= !−'*+' "#$%&%'(
!−loading = .51

.87 = . 67
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– Nunnally & Bernstein (1994) formula for partial 
correlation:

g as a latent variable

!"#$% =
!"# − !#%!"%
1 − !"%# 1 − !#%#

3. Partial Correlation
– Compute partial correlation of g-test with performance after 

removing the effects of u (which we define as measurement 
error and reliable non-g specific variance). 

– Where:1 = g-test scores
2 = performance
3 = u (=uniqueness)
correlation between performance (2) and u (3) is zero
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– Since 2 (performance) and u are uncorrelated:

g as a latent variable

!"#$% = '()*+×'(-
"*'(-) "*+

=
'()
"*'(-)

1 = g-test scores
2 = performance
3 = u = meas. error + s

– !"%# can be obtained using:
• Path analysis with variance decomposition

• Nunnally & Bernstein’s (1994) formula for the multiple 
correlation for three uncorrelated predictors (5-21, p. 184)

• Nunnally & Bernstein’s formula (5-19, p. 183) for two predictors 
(assuming a correlation of zero between the two predictors)

• All three methods give value of .49

!"#$% =
.51
1−.49#

= .51
1 − .24 =

.51
.76 =

.51

.87 = . 9:
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g as a latent variable: Results
Criterion Source g-test operational 

validity
Latent g
validity

r2
g-test r2

latent g

Training Level 3 SH04 .63 .72 40% 52%

Job Level 1 HSL06 .73 .84 53% 70%

Job Level 2 HSL06 .74 .85 55% 72%

Job Level 3 HSL06 .66 .76 44% 58%

Job Level 4 HSL06 .56 .64 31% 41%

Job Level 5 HSL06 .39 .45 15% 20%

Training Level 3 HH84 .57 .66 32% 43%

Job Level 1 HH84 .56 .64 31% 41%

Job Level 2 HH84 .58 .67 34% 44%

Job Level 3 HH84 .51 .59 26% 34%

Job Level 4 HH84 .40 .46 16% 21%

Job Level 5 HH84 .23 .26 5% 7%

Notes: MP13 = HH84=Hunter and Hunter (1984); = values used in Schmidt & Hunter (1998); BS09 = Berry and Sackett (2009); 
HSL06=Hunter, Schmidt, and Le (2006)



12

g as a latent variable: Results

Criterion Source g-test operational 
validity

Latent g
validity

r2
g-test r2

latent g

FGPA MP13 .51 .59 26% 34%

FGPA BS09
National

.59 .67 34% 45%

FGPA-ICGs BS09
National

.71 .82 51% 67%

Cum. GPA BS09
National

.52 .60 27% 36%

Cum. GPA ICGs BS09
National

.69 .79 48% 63%

FGPA BS09
College

.49 .57 24% 32%

FGPA-ICGs BS09
College

.43 .50 19% 25%

Cum. GPA BS09
College

.43 .50 19% 25%

Cum. GPA ICGs BS09
College

.56 .64 31% 41%

Notes: MP13 = Mattern & Patterson (2013); BS09 = Berry & Sackett (2009); ICG = GPA estimated using Aggregate of Individual Course 

Grades; FGPA = Freshman/First-Year GPA; Cum. GPA = Cumulative GPA; National = corrections made using national applicant SDs, etc.; 

College = corrections made using individual school’s SDs, etc.
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• High-level explanation
– As mentioned, standardized ability tests measure general 

intelligence, narrow aspects of intelligence, and random error.  
The latter two do not correlate with performance.

– Standardized ability tests are not pure measures of general 
intelligence, yet general intelligence is what predicts 
performance.

– It is possible to estimate the correlation between general 
intelligence and performance.

– For most jobs (i.e., those that are moderately complex), general 
intelligence has a validity of .76 for job performance.

g as a latent variable: Results
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• Uniform Guidelines call for a search for alternatives with equal 
validity and less adverse impact

• Search for alternatives to traditional g-tests with equal validity 
and lower group differences

– “Despite many attempts, no one has been able to devise a mental test 
which can both eliminate the gap between races and meet the basic 
criteria necessary to validate a test.” (Flynn, 1980, p.42)

– “the search for the Holy Grail in personnel psychology.” (Verive & 
McDaniel, 1996, p. 27)

– “The ‘holy grail’ of American selection psychologists is an assessment 
of GMA that does not cause adverse impact.” (Cook, 2009, p. 130)

– “Attempts to develop new general measures that reduce group 
differences associated with g have largely been unsuccessful.” (Tenopyr, 
2002, p118)

Alternatives to g
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• Addressed three questions
1. Can a test measure g as well as a traditional g-test but without group 

differences?
2. Can you measure g without group differences but with same criterion-

related validity?
3. Is it possible for another non-g-test related variable to have equal 

criterion-related validity as g-test?
• Used a variety of formulaic approaches (details are in the 

paper)
– Path analysis
– Variance decompositions of g-tests
– Incremental validity

• Assumptions: g-tests are fair (under Cleary model), specific 
variance lacks validity, g-loading = .87, d = 1.0, etc.

Alternatives to g
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1. Can a test measure g as well as a traditional g-test but 
without group differences?

• No.  If g-loading is .87, reliability is .90, etc. the 
specific variance must correlate -1.182 with RNO to 
give d = 0.

– This is, of course, impossible

• We also tried partialling RNO from g-test; this requires 
specific variance to correlate -.950 with RNO

• This is a very high correlation!

– This is equivalent to within-group norming

– We call this a GNAIT (g no adverse impact test)

Alternatives to g
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• Explanation:
– Consider the following model.

Alternatives to g

g

GNAIT s1

e

e

e

RNO

g-test s2
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• We will assume the following values:
– GNAIT and g-test have g-loadings of .87, reliabilities of .90.

• With reliability of .90, path from e to test score is 1 − .90 = .318
– rg,s = rs,e = rg,e = 0

• We can decompose the variance as follows:
)*+,-. = 1. = /0,*+,-. + /,,*+,-. + /+,*+,-.

1. = .87. + /,,*+,-. + .318.

1 = .757 + /,,*+,-. + .10
1 − .757 − .10 = /,,*+,-. = .143

/,,*+,- = /,,*+,-. = .143 = .378

Alternatives to g
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• Next, obtain observed correlation between RNO and g-
test score.
– Cohen (1998, formula 2.2.7)

! = #

#$ + 1
'(

– d = 1.0, p = q = .50 ∴ r = .447

• Now, obtain true score correlation between g and RNO

*+,-,/ =
!+,-,/01231
!456786569:

= .447
.87$

= .447
.87 = .514

Alternatives to g
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• Finally, obtain correlation between GNAIT and RNO
– Use path analysis tracing rule (Kenny, 1979/2004)

!"#$,&#'() = !"#$,+×-+,&#'() + !"#$,/0×-/0,&#'() + !"#$,1×-1,&#'()
0 = .514×.87 + !"#$,/0×.378 + 0×.316

0 = .447 + !"#$,/0×.378 + 0
−.447 = !"#$,/0×.378
−.447
.378 = !"#$,/0
!"#$,/0 = −1.182

Note that r = -1.182 is an impossible value

Alternatives to g
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• Finally, obtain correlation between GNAIT and RNO
– Alternately, consider this model:

Alternatives to g

g

GNAIT s1

e

e

e

RNO

g-test s2

.514

.447

0

.316

.316

0

.378

- 1.182

.378
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2. Can you measure g without group differences but 

with same criterion-related validity?

– Not really.  

– Traditional g-test adds incremental validity over GNAIT.  

– Amount of incremental validity depends on percentage of 

minority and majority group members.

• When g-test has validity of .51 and 50-50 split, 

GNAIT’s validity is .47

• When g-test has validity of .66 and 50-50 split, 

GNAIT’s validity is .62

• As you deviate from 50-50 split to 100-0 (or 0-100) 

split, GNAIT validity approaches g-test validity

Alternatives to g
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• Explanation
– Knowing that a GNAIT test with a g-loading of .87 and no group 

differences is impossible, what about the next best thing?
– We can partial RNO from the g-test (equivalent to within-group norming)
– Use formula for partial correlation (formula 5-14 from Nunnally & 

Bernstein, 1994, p. 176):
!"#.% =

!"# − !#%!"%
1 − !"%# 1 − !#%#

Where: variable 1 is the test, variable 2 is latent variable g, variable 3 is RNO

!"#.% =
.87 − .514×.447
1−.447# 1−.514#

!"#.% =
.87 − .230

1 − .200 1 − .264 = .834

• The g-loading has changed from .87 to .834

Alternatives to g
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• Explanation
– Using path analysis tracing rule, we can obtain a mathematically plausible 

value for correlation between s1 and GNAIT.

!"#$,&#'() = !"#$,+×-+,&#'() + !"#$,/0×-/0,&#'() + !"#$,1×-1,&#'()
0 = .514×.834 + !"#$,/0×.452 + 0×.318

0 = .429 + !"#$,/0×.452 + 0
−.429 = !"#$,/0×.452
−.429
.452 = !"#$,/0
!"#$,/0 = −0.950

There is a practical issue of finding a latent variable that correlates -.950 with RNO

Alternatives to g
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• Explanation
– Here is the model:

Alternatives to g

g

GNAIT s1

e

e

e

RNO

g-test s2

.514

.447

0

.316

0

- .947

.453

.316

.378
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• Explanation
• Partialling RNO out also impacts criterion-related validity.

– The criterion-related validity of the GNAIT is lower than the g-test.
– Validity drops from .510 to .469.
– Using Schmidt’s (2013) revised validity estimate of .660, the validity 

drops to .618.
– The g-test always adds incremental validity over the GNAIT

• In these analyses we have assumed that d = 1.0, p = q = .50.  The 
text of a SIOP poster provides the results for other values.
– As the proportion of protected group members deviates from .50, the 

impact on validity is reduced.

Alternatives to g
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• High-level explanation
– Scores on standardized ability tests have three underlying 

sources: general intelligence, narrow aspects of intelligence, 
and some random error.

– General intelligence is what predicts job and training 
performance (in most jobs).  The narrow aspects of intelligence 
and random error do not predict performance.

– Adverse impact is primarily due to general mental ability, not 
narrow aspects of intelligence, nor random error.

– Standardized ability tests measure general intelligence much 
more so than the narrow aspects of intelligence or random 
error.

Alternatives to g
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• High-level explanation
– In order for a standardized ability test to not have adverse 

impact and retain its validity, the narrow aspects of intelligence 
would have to correlate with majority/minority group status in 
the opposite direction that general intelligence does.

• However, these tests measure such a small amount of the 
narrow aspects that it is not possible to cancel out the 
adverse impact that is due to general intelligence.

Alternatives to g
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3. Is it possible for another non-g-test related variable to 
have equal criterion-related validity as g-test?
– Yes, but g-test always adds incremental validity

– For g-test validity of .51, alternative could have validity as 
high as .86 (.75 for g-test validity of .66)

– g-test adds incremental validity ΔR = .140 (.249 for g-test 
validity of .66) and ΔR2 = .260 (.436 for g-test validity of .66)

– Note that even a test with perfect validity (r = 1.0) has d ≥ .51 
(or .66) and violates 4/5ths ratio when less than ~75% 
applicants selected 

• Recall that Cleary-fair test with validity of .51 and d = 1 SD implies d = .51 on criterion
• (see Sackett & Ellingson, 1997, Table 2, to convert d and selection ratio to 4/5 ratios)

Alternatives to g
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• g-tests add incremental validity over all known alternatives

Alternatives to g
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• g-tests add incremental validity over all known alternatives

Alternatives to g
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• Most known alternatives are semi-g-tests; partialling out g
often lowers validity

Alternatives to g

Test g-loading Bivariate validity Partial validity
Job knowledge tests .55 .48 .11
Biodata .57 .35 -.16
College GPA .59 .32 -.24
Situational judgment tests .33 .26 .01
Assessment centers .57 .37 -.12
Work sample tests .37 .33 .08
Structured interviews .31 .51 .44
In-baskets .30 .36 .21
Interests .00 .14 .21
Conscientiousness tests .09 .26 .30
Job tryout procedure .44 .44 .19
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• High-level explanation
– It might be possible to develop a non-cognitive test that 

predicts performance as well as a standardized ability test but 
without adverse impact.

• Non-cognitive tests include personality, interests, etc..
– However, a standardized ability test would improve prediction 

of performance over and above this non-cognitive test.  The 
resulting battery would then have adverse impact.

– Even if you developed a test that perfectly predicted 
performance, it would also have adverse impact.

– It is not possible to avoid adverse impact if you want to 
maximize the validity of your selection process.

– Most personnel selection tests predict performance by virtue of 
measuring general intelligence.

Alternatives to g
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• Search for alternatives
– Based on our analyses, there are no alternatives to cognitive 

ability tests that have equal validity and less adverse impact

• What should practitioners do?
– Searching for alternatives is unlikely to resolve the validity-

diversity dilemma
– We suggest educating organizational leaders on tradeoffs of 

validity vs. diversity (e.g., expected job performance, ROI, 
adverse impact, diversity, etc. for different selection system 
options)

– Be aware that many selection measures actually measure g
– Be aware of basic research suggesting changes in test scores 

and group differences over time

Practical Implications
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• Flynn (1984, 1987, 2007, 2012)

– Reported that average IQ scores have been increasing about 1 

SD each generation

– Suggests that there are some environmental effects impacting g
• Dickens & Flynn (2006)

– Reported some evidence that group differences are decreasing

– However, this was not seen in Roth et al. (2001) meta-analysis

• There has been some debate in the intelligence literature 

on these findings

• However, it does suggest that one day group differences 

might disappear

Practical Implications



Questions?
Comments?
Suggestions?
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