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Overview

Brief review of cognitive ability testing

Will demonstrate that general mental ability 1s
more valid than previously thought

Will show that high-validity low adverse impact
cognitive ability tests cannot exist

— Provide mathematical proof
— Based on past research

Will discuss implications for personnel selection

Will include high-level overview in each section



Cognitive Ability Testing

One of the best predictors of training, job, and academic
performance

Many civil service tests are cognitive ability tests
A concern with cognitive ability tests 1s adverse impact

— Group differences (i.e., mean score test differences for different groups) is
contributing factor

« As well as cutoff score, recruitment practices, etc.

— Here we use the general term “adverse impact” to refer to average
differences between majority and minority groups

— This has led to searches for alternatives for cognitive ability tests
Scientifically speaking, cognitive ability 1s a construct(s), rather
than a testing method

— Can appear or be assessed in a variety of test types
— Much of the variance, and validity, is due to general mental ability (g2)



g as a latent variable

* Meta-analyses show that cognitive ability tests predict
performance:
— Fognitive ability, job performance — -0 1 (Schmidt & Hunter, 1998)
— Feognitive ability, job performance — -00 (Hunter, Schmidt, & Le, 2006)
—r = .63 (Schmidt & Hunter, 2004)

cognitive ability, training performance

—rsur ropa = -9 (Berry & Sackett, 2009)

—FGRE, LSAT, GMAT, MAT, MCAT, PCAT. Isy Year P4 — -41 10 .59 (Kuncel & Hezlett,
2007)

* Even when combined with other predictors there 1s still a good
amount of unexplained variance

» Applied perspective: focus on operational validity — obtain
correlation between test and performance, then correct for
range restriction and criterion unreliability



g as a latent variable

* Basic research perspective: make an additional correction for
predictor unreliability = True score validity

—Recall that cognitive ability test scores = g + broad factor(s) + narrow
factor(s) + reliable specific variance + measurement error

— Correcting for predictor reliability removes “measurement error”

—True score = g + broad factor(s) + narrow factor(s) + reliable specific
variance

 There 1s a problem here: “true scores” still include non-g
variance (and we know that non-g variance rarely adds validity)

— Jensen (1998): average g-loading for standardized tests is .87; g-loading
of GATB G-score is .87 (note this served as foundation of Schmidt &
Hunter’s validity generalization work)

— Reliabilities for standardized tests often in the .90s



g as a latent variable

* We used three approaches to estimate the validity of the latent

variable g

— Assumptions

 g-loading 1s .87

* Specific abilities have criterion-related validity of zero

1. Path Analysis Tracing Rule
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g-test

<

Operational Validity

T

g-loading @ g-validity >@

Pg—test,Performance = Pg,g—test XPg,Performance
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g as a latent variable

Pg—test,Performance — Pg,g—test XPg,Performance

Pg—test,Per formance

Pg.performance —

Pg,g—test

g—test validity

_validity =
g~ validity g—loading

51

lidity = =.59
g—validity = —=



g as a latent variable

Correction for unreliability

Reliability index: square root of reliability coefficient; gives the
correlation between observed and true scores.

If we define “reliability” of a g-loaded test as its “reliability” in
measuring the latent true-score variable g, then:

_ g-—testwvalidity  g-—test validity
Jreliability Jreliability index?

g—validity

g—test validity

reliability index

—test validit 51
g Y- 22_ 59

g—loading 87



g as a latent variable

3. Partial Correlation

Compute partial correlation of g-test with performance after
removing the effects of u (which we define as measurement
error and reliable non-g specific variance).

Nunnally & Bernstein (1994) formula for partial
correlation:

1 — 123713

2.3 =
\/1 — 7"123\/1 — 7"223

Where:1 = g-test scores
2 = performance
3 = u (=uniqueness)
correlation between performance (2) and u (3) 1s zero




g as a latent variable

—  Since 2 (performance) and u are uncorrelated:

r _ T—=0Xry3 g
12-3 — o
1-1£v1-0 /1—r123

- r{jcan be obtained using:

«  Path analysis with variance decomposition

Nunnally & Bernstein’s (1994) formula for the multiple
correlation for three uncorrelated predictors (5-21, p. 184)

Nunnally & Bernstein’s formula (5-19, p. 183) for two predictors
(assuming a correlation of zero between the two predictors)

«  All three methods give value of .49

51 51 51 51 59
r . — — = — =
1 = g-test scores 12 \/1—492 \/1 — .24 \/76 87

2 = performance
3 =y = meas. error +s




g as a latent variable: Results

Criterion

Source g-test operational

Latent g

’,.2

’,.2

g-test latent g
validity validity
Training Level 3 ~ SHO04 .63 72 40% 52%
Job Level 1 HSLO06 73 .84 53% 70%
Job Level 2 HSLO06 74 .85 55% 72%
Job Level 3 HSLO06 .66 76 44% 58%
Job Level 4 HSLO06 .56 .64 31% 41%
Job Level 5 HSLO06 .39 45 15% 20%
Training Level 3 HH84 57 .66 32% 43%
Job Level 1 HHS84 .56 .64 31% 41%
Job Level 2 HHS84 58 .67 34% 44%
Job Level 3 HHS84 Sl .59 26% 34%
Job Level 4 HHS84 40 46 16% 21%
Job Level 5 HHS84 23 26 5% 7%

Notes: MP13 = HH84=Hunter and Hunter (1984); = values used in Schmidt & Hunter (1998); BS09 = Berry and Sackett (2009);
HSLO6=Hunter, Schmidt, and Le (2006)



g as a latent variable: Results

Criterion Source g-test operational Latentg g test P latent g
validity validity

FGPA MP13 51 59 26% 34%

FGPA BS09 .59 .67 34% 45%
National

FGPA-ICGs BS09 1 82 51% 67%
National

Cum. GPA BS09 52 .60 27% 36%
National

Cum. GPA ICGs BS09 .69 79 48% 63%
National

FGPA BS09 49 S7 24% 32%
College

FGPA-ICGs BS09 43 .50 19% 25%
College

Cum. GPA BS09 43 .50 19% 25%
College

Cum. GPA ICGs BS09 .56 .64 31% 41%
College

Notes: MP13 = Mattern & Patterson (2013); BS09 = Berry & Sackett (2009); ICG = GPA estimated using Aggregate of Individual Course
Grades; FGPA = Freshman/First-Year GPA; Cum. GPA = Cumulative GPA; National = corrections made using national applicant SDs, etc.;
College = corrections made using individual school’s SDs, etc.



g as a latent variable: Results

* High-level explanation

— As mentioned, standardized ability tests measure general
intelligence, narrow aspects of intelligence, and random error.
The latter two do not correlate with performance.

— Standardized ability tests are not pure measures of general
intelligence, yet general intelligence 1s what predicts
performance.

— It 1s possible to estimate the correlation between general
intelligence and performance.

— For most jobs (1.€., those that are moderately complex), general
intelligence has a validity of .76 for job performance.



Alternatives to g

» Uniform Guidelines call for a search for alternatives with equal
validity and less adverse impact

* Search for alternatives to traditional g-tests with equal validity
and lower group differences

— “Despite many attempts, no one has been able to devise a mental test
which can both eliminate the gap between races and meet the basic
criteria necessary to validate a test.” (Flynn, 1980, p.42)

— “the search for the Holy Grail in personnel psychology.” (Verive &
McDaniel, 1996, p. 27)

—“The ‘holy grail’ of American selection psychologists is an assessment
of GMA that does not cause adverse impact.” (Cook, 2009, p. 130)

— “Attempts to develop new general measures that reduce group

differences associated with g have largely been unsuccessful.” (Tenopyr,
2002, p118)



Alternatives to g

e Addressed three questions

1. Can a test measure g as well as a traditional g-test but without group
differences?

2. Can you measure g without group differences but with same criterion-
related validity?

3. Is it possible for another non-g-test related variable to have equal
criterion-related validity as g-test?

* Used a variety of formulaic approaches (details are in the

paper)
— Path analysis
— Variance decompositions of g-tests

— Incremental validity

« Assumptions: g-tests are fair (under Cleary model), specific
variance lacks validity, g-loading = .87, d = 1.0, etc.



Alternatives to g

1. Can a test measure g as well as a traditional g-test but
without group differences?

* No. If g-loading 1s .87, reliability is .90, etc. the
specific variance must correlate -1.182 with RNO to
give d = 0.

— This 1s, of course, impossible

 We also tried partialling RNO from g-test; this requires
specific variance to correlate -.950 with RNO

This is a very high correlation!
— This 1s equivalent to within-group norming
— We call this a GNAIT (g no adverse impact test)



Alternatives to g

* Explanation:

— Consider the following model.

GNAIT




Alternatives to g

 We will assume the following values:
— GNAIT and g-test have g-loadings of .87, reliabilities of .90.
*  With reliability of .90, path from e to test score is v1 — .90 = .318

o rg,S:rs,e:rg,e:O

 We can decompose the Variance as follows

2 2 __
OTest = 1 pg Test + ps Test + pe Test

1% = 872 + péreset+ 3182
= 757 + Prest + .10
1— 757 — 10 = plrese = 143

ps,Test — psTest v.143 = .378



Alternatives to g

* Next, obtain observed correlation between RNO and g-
test score.

— Cohen (1998, formula 2.2.7)
d

1
dZ + —
45
— d=1.0,p=qg=.50 . r=.447
* Now, obtain true score correlation between g and RNO

T =

rRNO,g—test _ 447 447

PRNOG = = == 514
09 [reliability V872 87




Alternatives to g

* Finally, obtain correlation between GNAIT and RNO
— Use path analysis tracing rule (Kenny, 1979/2004)

PRNO,GNAIT = PRN0,gXPg,GNAIT T PRNO,s1XPs1,GNAIT T PRNO,e XPe,GNAIT
0= .514%x.87 + pRN0,51X-378 + 0x.316

O = 447 + pRN0,51X-378 + O

_4‘47 — pRNO,Sl X378
—.447

378 = PRNO,s1
Prnos1 = —1.182

Note that » =-1.182 is an impossible value



Alternatives to g

* Finally, obtain correlation between GNAIT and RNO

— Alternately, consider this model:

- 1.182




Alternatives to g

2. Can you measure g without group differences but
with same criterion-related validity?
— Not really.
— Traditional g-test adds incremental validity over GNAIT.

— Amount of incremental validity depends on percentage of
minority and majority group members.

When g-test has validity of .51 and 50-50 split,
GNAIT’s validity 1s .47

When g-test has validity of .66 and 50-50 split,
GNAIT’s validity 1s .62

 Asyou deviate from 50-50 split to 100-0 (or 0-100)
split, GNAIT validity approaches g-test validity



Alternatives to g

Explanation

—  Knowing that a GNAIT test with a g-loading of .87 and no group
differences is impossible, what about the next best thing?

—  We can partial RNO from the g-test (equivalent to within-group norming)

—  Use formula for partial correlation (formula 5-14 from Nunnally &

Bernstein, 1994, p. 176):
— 123713

23 =
Jl - 7"13\/ — 15

Where: variable 1 is the test, variable 2 1s latent variable g, variable 3 is RNO

87 — 514x.447
T =
123 = A—4472V1-5142
87 — 230
7"12_3 = = 834

V1 —.200vV1 — .264

* The g-loading has changed from .87 to .834



Alternatives to g

* Explanation

—  Using path analysis tracing rule, we can obtain a mathematically plausible
value for correlation between s; and GNAIT.

PRNO,GNAIT = PRNO,gXPg,GNAIT T PRNO,s1XPs1,GNAIT T PRNO,e XPe,GNAIT

0 = 514x.834 + pryo.s1 X452 + 0x.318
0= 429 + pRNO,Slx'452 + 0

—.429 = pRN0,51X'452

—.429
452 = PRNO,s1

PrNo,s1 = —0.950

There 1s a practical issue of finding a latent variable that correlates -.950 with RNO



Alternatives to g

* Explanation

—  Here 1s the model:

-.947




Alternatives to g

* Explanation

» Partialling RNO out also impacts criterion-related validity.

The criterion-related validity of the GNAIT is lower than the g-test.
Validity drops from .510 to .469.

Using Schmidt’s (2013) revised validity estimate of .660, the validity
drops to .618.

The g-test always adds incremental validity over the GNAIT

* In these analyses we have assumed that d = 1.0, p = ¢ = .50. The
text of a SIOP poster provides the results for other values.

As the proportion of protected group members deviates from .50, the
impact on validity 1s reduced.



Alternatives to g

* High-level explanation

— Scores on standardized ability tests have three underlying
sources: general intelligence, narrow aspects of intelligence,
and some random error.

— General intelligence 1s what predicts job and training
performance (in most jobs). The narrow aspects of intelligence
and random error do not predict performance.

— Adverse impact 1s primarily due to general mental ability, not
narrow aspects of intelligence, nor random error.

— Standardized ability tests measure general intelligence much
more so than the narrow aspects of intelligence or random
error.



Alternatives to g

* High-level explanation

— In order for a standardized ability test to not have adverse
impact and retain its validity, the narrow aspects of intelligence
would have to correlate with majority/minority group status in
the opposite direction that general intelligence does.

 However, these tests measure such a small amount of the
narrow aspects that it 1s not possible to cancel out the
adverse impact that is due to general intelligence.



Alternatives to g

3. Is 1t possible for another non-g-test related variable to
have equal criterion-related validity as g-test?

Yes, but g-test always adds incremental validity

For g-test validity of .51, alternative could have validity as
high as .86 (.75 for g-test validity of .66)

g-test adds incremental validity AR = .140 (.249 for g-test
validity of .66) and 4R? = .260 (.436 for g-test validity of .66)

Note that even a test with perfect validity (» = 1.0) has d > .51
(or .66) and violates 4/5ths ratio when less than ~75%

applicants selected

Recall that Cleary-fair test with validity of .51 and d = 1 SD implies d = .51 on criterion
(see Sackett & Ellingson, 1997, Table 2, to convert d and selection ratio to 4/5 ratios)



Alternatives to g

g-tests add incremental validity over all known alternatives
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Alternatives to g

g-tests add incremental validity over all known alternatives
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Alternatives to g

* Most known alternatives are semi-g-tests; partialling out g
often lowers validity

Test g-loading Bivariate validity Partial validity
Job knowledge tests .55 48 A1
Biodata 57 35 -.16
College GPA .59 32 -.24
Situational judgment tests 33 26 .01
Assessment centers S7 37 -.12
Work sample tests 37 33 .08
Structured interviews 31 S1 44
In-baskets .30 .36 21
Interests .00 14 21
Conscientiousness tests .09 26 .30

Job tryout procedure 44 44 19



Alternatives to g

* High-level explanation

— It might be possible to develop a non-cognitive test that
predicts performance as well as a standardized ability test but
without adverse impact.

« Non-cognitive tests include personality, interests, etc..

— However, a standardized ability test would improve prediction
of performance over and above this non-cognitive test. The
resulting battery would then have adverse impact.

— Even 1f you developed a test that perfectly predicted
performance, 1t would also have adverse impact.

— It 1s not possible to avoid adverse impact if you want to
maximize the validity of your selection process.

— Most personnel selection tests predict performance by virtue of
measuring general intelligence.



Practical Implications

* Search for alternatives
— Based on our analyses, there are no alternatives to cognitive
ability tests that have equal validity and less adverse impact
* What should practitioners do?

— Searching for alternatives is unlikely to resolve the validity-
diversity dilemma

—  We suggest educating organizational leaders on tradeoffs of
validity vs. diversity (e.g., expected job performance, ROI,
adverse 1impact, diversity, etc. for different selection system
options)

— Be aware that many selection measures actually measure g

— Be aware of basic research suggesting changes 1n test scores
and group differences over time



Practical Implications

Flynn (1984, 1987, 2007, 2012)

— Reported that average 1Q scores have been increasing about 1
SD each generation

— Suggests that there are some environmental effects impacting g

Dickens & Flynn (2006)
— Reported some evidence that group differences are decreasing

— However, this was not seen 1n Roth et al. (2001) meta-analysis

There has been some debate in the intelligence literature
on these findings

However, 1t does suggest that one day group differences
might disappear



Questions?
Comments?
Suggestions”?



