

INCEPTION OF AI IN SELECTION

IPAC 2018

SHAKER

SCIENCE • EXPERIENCE • RESULTS

We are morphing so fast that our ability to invent new things outpaces the rate at which we can civilize them.

Kevin Kelly

We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run

Amara's Law

If a picture is worth a thousand words,

A short video snippet is worth a thousand multiple choice questions.

Assessments will be developed to more closely resemble the work space—blurring the line between a work sample and a day in the life on the job

Shaker International

Offering Virtual Job Tryout technology that combines selection science, predictive modeling, and over a decade of proven results to help your company make great hiring decisions with high accuracy

Presenters

Derek Mracek, Ph.D.

Eric Sydell, Ph.D.

Isaac Thompson, Ph.D.

How AI is making inroads to HR?

Buzzwords Defined (AI, ML, & DL) Enter Data Science Where we are headed

Deep Dive into the Power of Deep Learning State of the Art | Science Manual vs Deep Learning Deep Learning | Common Questions from Clients The Future is Now

Artificial Intelligence vs Machine Learning vs Deep Learning

ARTIFICIAL

Computational reasoning

MACHINE LEARNING

Optimize for business outcomes (job performance and turnover)

DEEP LEARNING Advanced processing of unstructured data to improve prediction Shaker has been using machine learning techniques for over 15 years to predict important business metrics

> Combining tried and true machine learning with world class deep learning, we have distinguished ourselves as leaders in the field

Deep learning is integrated into our systems to score candidate openended responses in a way that is both highly predictive of future success on the job and enhances realism

Data Science Defined

Necessary Skills

- high level of coding skills
- high level of statistics skills
- High level of domain expertise
- Someone who can leverage the advances in ML through open source, applied to a domain.

Function

 To a) build new products or b) improve processes, & c) inform decision making.

Data Science Integration into HR

	Lacking	Moderate	Mature
Data Storage	Disparate excel files stored on many different computers.	Disparate databases and some random sources (google docs, etc.).	Single source access to databases, data governance (agreed definitions and sharing), automatic data input .
Data Manipulation	Any kind of manual process (error prone).	Standardized data processing	Automated data processing in open source code that can fit on many structures.
Data Analysis	Clicking or copy and paste, usually descriptive or correlational.	ML/DL scripts running on local machines that produce files as results.	Advanced DL/ML (open source) running in cloud.
Results Share Out	Manual formatting, static decisions (ppts).	Any combination of static and dynamic, usually automated though.	Realtime online dynamic dashboard visualizations that tell a story.

Current State

Current State of HR Analytics

- **Defined:** The application of data science and measurement science to HR.
- **Outcomes:** enterprise dashboards that share **metrics** (such as of engagement or relationships) and/or **predictions** (e.g. workload vs capacity predictions).

SHAKFR

As behaviors and expressions with computers become more pervasive and therefore tracked (turned into data).

These human-computer interactions with ML/DL will determine:

- fit with a company
- fit with a team
- personality
- proficiency
- training needs

Rational Empirical Approach

MACHINE SUCCESSFULLY REPLICATES EXPERT HUMAN RATINGS

SCORES WHAT NO ONE COULD AUTOMATICALLY SCORE BEFORE

Immersive, realistic, unstructured work samples can be scored without the cost and time of human raters

EQUIVALENT

PREDICTIVE POWER BEYOND TRADITIONAL ASSESSMENT MEASURES

Overall Performance Customer Satisfaction Expression, Clarity, Grammar Ramp Up Time, Problem Solving Attitude, Professionalism

Shaker's Use of Advanced AI in Employee Selection

Each candidate has a total score i.e. predicted success.

4

OVERALL FIT	Likely to be competent in all areas of the job and handle	1	2	3
	responsibilities with proficiency.			3
	Note: Overall Performance is <u>NOT</u> an average of the Competency			
	Fit results below.			

State of the Art|Science

Manual and Deep Learning

Feature Engineering the Manual Way

"Feature engineering is the process of transforming **raw data** into **features** that better represent **the underlying problem** to **the predictive models**, resulting in improved **model accuracy** on **unseen data**." – Dr. Jason Brownlee

Manual Variable Creation

Describe your data in ways that the computer will understand (feature engineering, often requiring a PhD in domain) Learning Algorithm (optimise the weights of the features e.g., regression)

What Does More "Manual" NLP Look Like?

Manual NLP involves creating a document-term matrix

- Code whether a term exists in a candidate response
- Options for coding exist
 - e.g., binary, frequency, tf-idf
- More involved terms/columns, such as consecutive words:
 - Unigram "hello"; Bigram "so sorry"; Trigram "so very sorry"

		Terms - Unigrams - Binary Coding				
		hello	late	bummer	sorry	product
(0)	Response 1	1	0	0	1	0
nses	Response 2	1	0	0	1	1
tespo	Response 3	1	0	0	0	1
	Response 4	0	1	0	0	0

Deep Learning - Long Short Term Memory RNNs

Representational Learning

• The computer seeks to replicate the 'raw' candidate text input in ways that it understands

Prediction

• Take last layer and predict outcome (SME rating or performance on the job)

Takeaway

• Through an iterative process DL creates its own input features from the text

Who else is using LSTM for NLP?

- Google Voice
- Alexa
- Siri
- Chat-bots

Deep Learning - Under the Hood

What is "directional"? Why does it matter?

- DL models are "sequential"
 - Kind of like a nested longitudinal model
 - \circ Model traverses each word of the response

What is "bidirectional"? Why does it matter?

- DL models traverse "forwards"
- DL models can traverse "backwards" too

"This IPAC conference is awesome"

- Forwards: the term IPAC has memory of this
- Backwards: the term conference has memory of *awesome*
- Forward and backward are combined

What is "memory" in LSTM?

- Combos of words that are not necessarily adjacent
 This is referred to as "context"
- Higher level abstractions
 - "Hello, sorry -- -- wow -- -- damaged"

What's the point?

- Typing and talking \rightarrow realism (\uparrow) and fidelity (\uparrow)
- Context better captures the realism and fidelity

What is an "embedding layer"?

- Corpus of words from the internet
 - Helps with sparsity of relatively small samples
 - Uses semantic relationships between words to improve prediction
 - Frog/toad/lizard
 - Sorry/bummer/misfortune

What's the point? How can it help?

How do I interpret deep learning parameters?

• Harder to interpret the high-level abstractions

"There is a growing sense that neural networks need to be interpretable to humans. ... Two major threads of research have begun: feature visualization and attribution."

> Researchers from Google Brain Team Nov 7, 2017

Visualize the BARs using heat mapping!

- 5 out of 5 -- Effective Behavior
- 4 out of 5 -- Somewhat Effective Behavior
- 3 out of 5 -- Behavior
- 2 out of 5 -- Somewhat Ineffective Behavior
- 1 out of 5 -- Ineffective Behavior

Wow, another day another <mark>dumb person I have</mark> to deal with
Whether you are doing this or not sorry to hear you are having a bad day
hope you feel similarly <mark>.</mark>
<mark>hard</mark> to <mark>believe</mark> we would be <mark>responsible</mark> for you <mark>doing</mark> what you <mark>did</mark>

SHAKER SCIENCE - EXPERIENCE - RESULTS

Deep Learning - Takeaways

Advantages of Deep Learning?

- Put unbiased, expert judgment to scale
- Follow best practices for evaluating open-ended content
- Equipped to capture realism and fidelity
- Visualize the expert mental model

Cautions of Deep Learning?

- Gold in gold out -- garbage in garbage out
- Need content that promotes meaningful variability
- Don't confuse the machine

Our Model of Deep Learning

Shaker's Use of Advanced AI in Employee Selection

	OVERALL FIT	Likely to be competent in all areas of the job and handle	ſ	1	2	3
		responsibilities with proficiency.				3
	Note: Overall Performance is <u>NOT</u> an average of the Competency Fit results below.	ŀ			-	

Demo of Automatic Deep Learning Scoring

"History by mimic has not, and presumably never will be precipitously but blithely ensconced. Society will always encompass imaginativeness; many of scrutinizations but a few for an amanuensis. The perjured imaginativeness lies in the area of theory of knowledge but also the field of literature. Instead of enthralling the analysis, grounds constitutes both a disparaging quip and a diligent explanation."

NPR, "More States Opting To 'Robo-Grade' Student Essays By Computer"

Future is Now

Virtual Assessment Center

Enhanced Realism + Deep Learning Technology

WHAT IS IT:

Self-guided series of interactions with a day-in-the life feel

A mix of close and open-ended items enhanced by machine learning

Simulations that can be paired with a global job/culture fit or other more traditional assessment modules

Available off-the-shelf for 5 - 8 major job categories (e.g., sales, leadership)

Virtual Assessment Center

Home

Email

Reports Calendar

r Travel

Select the site you would like to visit

Example Competency Mapping

Example Simulation Exercises						
	Presentation	Voicemail	Structured Interview	In-basket	Brainstorming Presentation Notes	Written Report
Verbal Communication	\checkmark	\checkmark	\checkmark			
Written Communication				\checkmark	\checkmark	\checkmark
Problem Solving	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Organizing and Planning	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Influencing Others	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Consideration and Awareness of Others	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Note. \checkmark = hypothesized competency simulation link.

Questions

Contact info:

Derek Mracek: derek.mracek@shakerinternational.com Isaac Thompson: <u>isaac.thompson@shakerinternational.com</u> Eric Sydell: <u>eric.sydell@shakerinternational.com</u>

Machine Learning & Advanced Analytics

Our Experience	10+ years of proven results using AI and machine learning Open-ended text scoring, closed loop analytics, simulation scoring
Our Knowledge	Experts in selection science & advanced analysis techniques Appropriate application to employee selection context Big data isn't necessarily useful data (or fair); garbage in, garbage out Algorithms that are rational and do not create disparate impact
	Continue loading the evolution of colection ecience, building
Our Direction	on the foundation of measurement and predicting human behavior Research partnerships with academic and corporate entities

Where We're Headed

DEEP LEARNING APPLICATION IMPLEMENTATION - Q3 2018

Combine structured content with new open-ended exercises

- Same rigor applied to all predictors
- Productionize deep learning algorithms

Launch

EMBED DEEP LEARNING WITHIN OTHER SHAKER VJTS - Q4 2018

Apply machine learning approach to existing open-ended exercises

Brainstorming, Recalling customer cues (included in client systems)

Implement new simulations requiring open-ended responses

 Simulated scenarios, in-basket, interview, work samples, accomplishment records, etc.

